High throughput simultaneous tracking of seabirds to elucidate the environmental drivers of intraspecific competition

Tracking wild animals, such as seabirds, poses substantial logistical difficulties as they often cannot be observed directly, meaning remote tracking technology is integral to the study of natural behaviour. GPS loggers, which store animals’ position at fixed time intervals, are one of the most commonly used remote tracking devices. However, they present a significant cost-to-output trade-off.

Affordable GPS tags collect data archivally, and so the animal must be recaptured to retrieve the tag its data. They are also limited in memory capacity and battery life, limiting study durations to 2-3 weeks maximum, and their consequentially large size can have significant impacts on normal behaviour for many species. More expensive devices overcome these problems by remotely communicating with satellites to download data to a server, but can cost hundreds or thousands of pounds per tag, limiting the number of individuals that can be tracked at once. Reverse GPS technology overcomes many of these limitations. Under this system, small, radio frequency-emitting tags are attached to animals, which communicate with nearby receiver stations to estimate and download the location of the tagged animal. These tags are very lightweight, not limited by memory, and have very low power consumption, and so can be used to tag many individuals at once, for long durations, and at a low cost. The ATLAS Wildlife Tracking System is a revolutionary reverse GPS system that has been used on a variety of study systems across the globe to remotely track many individuals simultaneously. We propose to install the first ATLAS system in the Arctic, and conduct a proof-of-concept test of its operationality. During this project, we will establish an ATLAS network of 6 base stations, giving coverage of a 26km2 area, encapsulating a kittiwake study colony and a large fraction of the Bijleveld fjord, at the base of which lies the Nordenskjöld Glacier. This glacier is an important foraging site, but is vulnerable to many of the effects of climate change in the Arctic, including sea surface temperature rises and Atlantification (whereby warmer and saltier water extends into the Arctic ocean, altering prey availability). We will fit 200 kittiwakes with tags, a substantial fraction of the colony, to examine to what extent environmental conditions reduce or exacerbate competition in the area, and how individuals respond. Once optimised, this system could be rolled out to multiple other species, giving a wholistic overview of movement and interactions in this ecosystem.

Grant reference
Natural Environment Research Council
Total awarded
£80,173 GBP
Start date
1 Feb 2023
0 years 8 months 30 days
End date
31 Oct 2023